Automatic Artery/Vein Classification Using a Vessel-Constraint Network for Multicenter Fundus Images

Author:

Hu Jingfei,Wang Hua,Cao Zhaohui,Wu Guang,Jonas Jost B.,Wang Ya Xing,Zhang Jicong

Abstract

Retinal blood vessel morphological abnormalities are generally associated with cardiovascular, cerebrovascular, and systemic diseases, automatic artery/vein (A/V) classification is particularly important for medical image analysis and clinical decision making. However, the current method still has some limitations in A/V classification, especially the blood vessel edge and end error problems caused by the single scale and the blurred boundary of the A/V. To alleviate these problems, in this work, we propose a vessel-constraint network (VC-Net) that utilizes the information of vessel distribution and edge to enhance A/V classification, which is a high-precision A/V classification model based on data fusion. Particularly, the VC-Net introduces a vessel-constraint (VC) module that combines local and global vessel information to generate a weight map to constrain the A/V features, which suppresses the background-prone features and enhances the edge and end features of blood vessels. In addition, the VC-Net employs a multiscale feature (MSF) module to extract blood vessel information with different scales to improve the feature extraction capability and robustness of the model. And the VC-Net can get vessel segmentation results simultaneously. The proposed method is tested on publicly available fundus image datasets with different scales, namely, DRIVE, LES, and HRF, and validated on two newly created multicenter datasets: Tongren and Kailuan. We achieve a balance accuracy of 0.9554 and F1 scores of 0.7616 and 0.7971 for the arteries and veins, respectively, on the DRIVE dataset. The experimental results prove that the proposed model achieves competitive performance in A/V classification and vessel segmentation tasks compared with state-of-the-art methods. Finally, we test the Kailuan dataset with other trained fusion datasets, the results also show good robustness. To promote research in this area, the Tongren dataset and source code will be made publicly available. The dataset and code will be made available at https://github.com/huawang123/VC-Net.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference48 articles.

1. Arterioles and venules classification in retinal images using fully convolutional deep neural network;AlBadawi;Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portuga,2018

2. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation.;Alom;arXiv,2018

3. An automatic graph-based approach for artery/vein classification in retinal images.;Dashtbozorg;IEEE Trans. Image Process.,2014

4. Retinal artery-vein classification via topology estimation.;Estrada;IEEE Trans. Med. Imaging,2015

5. Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation;Feng;Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP),2017

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3