LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images

Author:

Fhima JonathanORCID,Van Eijgen JanORCID,Billen Moulin-Romsée Marie-Isaline,Brackenier HeloïseORCID,Kulenovic Hana,Debeuf Valérie,Vangilbergen Marie,Freiman MotiORCID,Stalmans IngeborgORCID,Behar Joachim AORCID

Abstract

Abstract Objective. This study aims to automate the segmentation of retinal arterioles and venules (A/V) from digital fundus images (DFI), as changes in the spatial distribution of retinal microvasculature are indicative of cardiovascular diseases, positioning the eyes as windows to cardiovascular health. Approach. We utilized active learning to create a new DFI dataset with 240 crowd-sourced manual A/V segmentations performed by 15 medical students and reviewed by an ophthalmologist. We then developed LUNet, a novel deep learning architecture optimized for high-resolution A/V segmentation. The LUNet model features a double dilated convolutional block to widen the receptive field and reduce parameter count, alongside a high-resolution tail to refine segmentation details. A custom loss function was designed to prioritize the continuity of blood vessel segmentation. Main Results. LUNet significantly outperformed three benchmark A/V segmentation algorithms both on a local test set and on four external test sets that simulated variations in ethnicity, comorbidities and annotators. Significance. The release of the new datasets and the LUNet model (www.aimlab-technion.com/lirot-ai) provides a valuable resource for the advancement of retinal microvasculature analysis. The improvements in A/V segmentation accuracy highlight LUNet's potential as a robust tool for diagnosing and understanding cardiovascular diseases through retinal imaging.

Funder

ERANET-CVD

Publisher

IOP Publishing

Reference42 articles.

1. Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores;Abbasi-Sureshjani,2016

2. Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images;Abbasi-Sureshjani,2015

3. FundusQ-Net: a regression quality assessment deep learning algorithm for fundus images quality grading;Abramovich;Computer Methods and Programs in Biomedicine,2023

4. Dataset from fundus images for the study of diabetic retinopathy;Benítez;Data Br.,2021

5. Robust vessel segmentation in fundus images;Budai;Int. J. Biomed. Imaging,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3