Heart Rate Variability in Healthy Subjects During Monitored, Short-Term Stress Followed by 24-hour Cardiac Monitoring

Author:

Gu Zifan,Zarubin Vanessa C.,Mickley Steinmetz Katherine R.,Martsberger Carolyn

Abstract

Heart Rate Variability (HRV) can be a useful metric to capture meaningful information about heart function. One of the non-linear indices used to analyze HRV, Detrended Fluctuation Analysis (DFA), finds short and long-term correlations in RR intervals to capture quantitative information about variability. This study focuses on the impact of visual and mental stimulation on HRV as expressed via DFA within healthy adults. Visual stimulation can activate the automatic nervous system to directly impact physiological behavior such as heart rate. In this investigation of HRV, 70 participants (21 males) viewed images on a screen followed by a math and recall task. Each viewing segment lasted 2 min and 18 s. The math and memory recall task segment lasted 4 min total. This process was repeated 9 times during which the participants’ electrocardiogram was recorded. 37 participants (12 males) opted in for an additional 24-h Holter recording after the viewing and task segments of the study were complete. Participants were randomly assigned to either a pure (organized image presentation) or mixed (random image presentation) image regime for the viewing portion of the study to investigate the impact of the external environment on HRV. DFA α1 was extracted from the RR intervals. Our findings suggest that DFA α1 can differentiate between the viewing [DFA α1 range from 0.96 (SD = 0.25) to 1.08 (SD = 0.22)] and the task segments [DFA α1 range from 1.17 (SD = 0.21) to 1.26 (SD = 0.25)], p < 0.0006 for all comparisons. However, DFA α1 was not able to distinguish between the two image regimes. During the 24-hour follow up, participants had an average DFA α1 = 1.09 (SD = 0.14). In conclusion, our findings suggest a graded response in DFA during short term stimulation and a responsiveness in participants to adjust physiologically to their external environment expressed through the DFA exponent.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3