Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography

Author:

Fu Mingyu,Wang Yitian,Chen Zixin,Li Jin,Xu Fengguo,Liu Xinyu,Hou Fengzhen

Abstract

This study centers on automatic sleep staging with a single channel electroencephalography (EEG), with some significant findings for sleep staging. In this study, we proposed a deep learning-based network by integrating attention mechanism and bidirectional long short-term memory neural network (AT-BiLSTM) to classify wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep stages N1, N2 and N3. The AT-BiLSTM network outperformed five other networks and achieved an accuracy of 83.78%, a Cohen’s kappa coefficient of 0.766 and a macro F1-score of 82.14% on the PhysioNet Sleep-EDF Expanded dataset, and an accuracy of 81.72%, a Cohen’s kappa coefficient of 0.751 and a macro F1-score of 80.74% on the DREAMS Subjects dataset. The proposed AT-BiLSTM network even achieved a higher accuracy than the existing methods based on traditional feature extraction. Moreover, better performance was obtained by the AT-BiLSTM network with the frontal EEG derivations than with EEG channels located at the central, occipital or parietal lobe. As EEG signal can be easily acquired using dry electrodes on the forehead, our findings might provide a promising solution for automatic sleep scoring without feature extraction and may prove very useful for the screening of sleep disorders.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference64 articles.

1. Tensorflow: large-scale machine learning on heterogeneous distributed systems.;Abadi;arXiv,2016

2. Efficient sleep stage classification based on EEG signals.;Aboalayon;IEEE LISAT,2014

3. A tutorial on the cross-entropy method.;Boer;Ann. Operat. Res.,2005

4. A comparative review on sleep stage classification methods in patients and healthy individuals.;Boostani;Comput. Methods Prog. Biomed.,2017

5. Recurrent deep neural networks for real-time sleep stage classification from single channel EEG.;Bresch;Front. Comput. Neurosci.,2018

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3