Automatic sleep scoring for real-time monitoring and stimulation in individuals with and without sleep apnea

Author:

Esparza-Iaizzo MartínORCID,Sierra-Torralba María,Klinzing Jens G,Minguez Javier,Montesano LuisORCID,López-Larraz EduardoORCID

Abstract

Digital therapeutics, enabled by advanced machine learning algorithms and medical wearable devices, offer a promising approach to streamline diagnostics and improve access to healthcare. Within this framework, automatic sleep scoring can provide accurate and efficient sleep analysis from electrophysiological signals recorded with wearable sensors, such as electroencephalography (EEG). However, the optimal configuration and temporal dynamics of automatic sleep scoring systems remain unclear, especially concerning their performance across different population samples. This study systematically investigates the impact of electrode setup, temporal scope, and population characteristics on the performance of automatic sleep scoring algorithms. Utilizing a convolutional neural network (CNN) model, we analyzed various electrode configurations and temporal dynamics using datasets comprising both healthy participants and individuals with sleep apnea. Our findings reveal that sleep scoring based on a single frontal EEG channel demonstrates reliable congruency with human expert scorers, with minimal improvement observed with additional sensors. Moreover, we demonstrate that real-time sleep scoring can be achieved with comparable accuracy to offline methods, which rely on past and future information to classify a window of interest. Remarkably, a notable reduction in decoding accuracy is observed for individuals with sleep disorders compared to healthy participants, highlighting the challenges inherent in accurately assessing sleep stages in clinical populations. Digital solutions for automatic sleep scoring hold promise for facilitating timely diagnoses and personalized treatment plans, with applications extending beyond sleep analysis to include closed-loop neurostimulation interventions. Our findings provide valuable insights into the complexities of automatic sleep scoring and offer considerations for the development of effective and efficient sleep assessment tools in both clinical and research settings.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , et al. (2016). TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘16). 265–283

2. Digital therapeutics in neurology

3. Multichannel Sleep Stage Classification and Transfer Learning using Convolutional Neural Networks

4. Sleep as a Therapeutic Target in the Aging Brain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3