Toward improved understanding of foot shape, foot posture, and foot biomechanics during running: A narrative review

Author:

Mei Qichang,Kim Hyun Kyung,Xiang Liangliang,Shim Vickie,Wang Alan,Baker Julien S.,Gu Yaodong,Fernandez Justin

Abstract

The current narrative review has explored known associations between foot shape, foot posture, and foot conditions during running. The artificial intelligence was found to be a useful metric of foot posture but was less useful in developing and obese individuals. Care should be taken when using the foot posture index to associate pronation with injury risk, and the Achilles tendon and longitudinal arch angles are required to elucidate the risk. The statistical shape modeling (SSM) may derive learnt information from population-based inference and fill in missing data from personalized information. Bone shapes and tissue morphology have been associated with pathology, gender, age, and height and may develop rapid population-specific foot classifiers. Based on this review, future studies are suggested for 1) tracking the internal multi-segmental foot motion and mapping the biplanar 2D motion to 3D shape motion using the SSM; 2) implementing multivariate machine learning or convolutional neural network to address nonlinear correlations in foot mechanics with shape or posture; 3) standardizing wearable data for rapid prediction of instant mechanics, load accumulation, injury risks and adaptation in foot tissue and bones, and correlation with shapes; 4) analyzing dynamic shape and posture via marker-less and real-time techniques under real-life scenarios for precise evaluation of clinical foot conditions and performance-fit footwear development.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Zhejiang Province

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3