Numerical Analysis of the Plantar Pressure Points during the Stance Phases for the Design of a 3D-Printable Patient-Specific Insole

Author:

Serrato-Pedrosa Jesus Alejandro1ORCID,Urriolagoitia-Sosa Guillermo1,Romero-Ángeles Beatriz1ORCID,Carrasco-Hernández Francisco2ORCID,Gallegos-Funes Francisco Javier1ORCID,Trejo-Enriquez Alfonso1,Carbajal-López Alfredo1,Gomez-Niebla Jorge Alberto1ORCID,Correa-Corona Martin Ivan1,Urriolagoitia-Calderón Guillermo Manuel1

Affiliation:

1. Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Profesional Adolfo López Mateos, Edificio 5, 2do, Piso, Biomechanics Group, Col. Lindavista, Del. Gustavo A. Madero, Ciudad de México 07320, Mexico

2. Universidad Tecnológica de Durango, Departamento Académico de Mecatrónica y Energías Renovables, Carretera Durango—Mezquital km 4.5 s/n, Gabino Santillán, Durango C.P. 34308, Mexico

Abstract

The study of the phenomena occurring in the plantar region is remarkably intriguing, especially when performing a normal gait cycle where the foot is under loading conditions. The effects presented in the foot while walking provide relevant indicators regarding clinical means for enhancing regular performance or rehabilitation therapies. Nevertheless, more than traditional methods are needed to biomechanically evaluate foot structural conditions, leading to an incomplete database for determining the patient’s needs so that advanced methodologies provide detailed medical assessment. Therefore, it is necessary to employ technological engineering tools to optimize biomechanical plantar pressure evaluations to reach suitable personalized treatments. This research initially evaluated numerically the pressure points in the foot sole region in each one of the five stance phases in a normal gait cycle. Medical imaging techniques were utilized to construct an anatomically accurate biomodel of the soft tissues of the right foot. The Finite Element Method was employed to predict peak plantar pressure in barefoot conditions for all stance phases; results from this case study presented a close alignment with gait experimental testing implemented to analyze the feasibility and validation of all mechanical considerations for the numerical analyses. Hence, having a solid foundation in the biomechanical behavior from the first case study close estimates, a 3D-printable patient-specific insole was designed and numerically analyzed to observe the mechanical response in the plantar critical zones utilizing a personalized orthotic device. Results from the second case study notably demonstrated a crucial decrement in excessive pressure values. Employing morphological customization orthopedics modeling combined with 3D-printable materials is revolutionizing assistive device design and fabrication techniques. The fundamental contribution of this research relies on deepening the knowledge of foot biomechanics from an interdisciplinary approach by numerically analyzing pressure distribution in critical regions for all five stances phases; thus, based on the methods employed, the results obtained contribute to the advances of patient-specific foot orthopedics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3