Extracting the Auditory Attention in a Dual-Speaker Scenario From EEG Using a Joint CNN-LSTM Model

Author:

Kuruvila Ivine,Muncke Jan,Fischer Eghart,Hoppe Ulrich

Abstract

Human brain performs remarkably well in segregating a particular speaker from interfering ones in a multispeaker scenario. We can quantitatively evaluate the segregation capability by modeling a relationship between the speech signals present in an auditory scene, and the listener's cortical signals measured using electroencephalography (EEG). This has opened up avenues to integrate neuro-feedback into hearing aids where the device can infer user's attention and enhance the attended speaker. Commonly used algorithms to infer the auditory attention are based on linear systems theory where cues such as speech envelopes are mapped on to the EEG signals. Here, we present a joint convolutional neural network (CNN)—long short-term memory (LSTM) model to infer the auditory attention. Our joint CNN-LSTM model takes the EEG signals and the spectrogram of the multiple speakers as inputs and classifies the attention to one of the speakers. We evaluated the reliability of our network using three different datasets comprising of 61 subjects, where each subject undertook a dual-speaker experiment. The three datasets analyzed corresponded to speech stimuli presented in three different languages namely German, Danish, and Dutch. Using the proposed joint CNN-LSTM model, we obtained a median decoding accuracy of 77.2% at a trial duration of 3 s. Furthermore, we evaluated the amount of sparsity that the model can tolerate by means of magnitude pruning and found a tolerance of up to 50% sparsity without substantial loss of decoding accuracy.

Funder

Johannes und Frieda Marohn-Stiftung

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3