Abstract
Abstract
Objective: Decoding auditory attention from brain signals is essential for the development of neuro-steered hearing aids. This study aims to overcome the challenges of extracting discriminative feature representations from electroencephalography (EEG) signals for auditory attention detection (AAD) tasks, particularly focusing on the intrinsic relationships between different EEG channels. Approach: We propose a novel attention-guided graph structure learning network, AGSLnet, which leverages potential relationships between EEG channels to improve AAD performance. Specifically, AGSLnet is designed to dynamically capture latent relationships between channels and construct a graph structure of EEG signals. Main result: We evaluated AGSLnet on two publicly available AAD datasets and demonstrated its superiority and robustness over state-of-the-art models. Visualization of the graph structure trained by AGSLnet supports previous neuroscience findings, enhancing our understanding of the underlying neural mechanisms. Significance: This study presents a novel approach for examining brain functional connections, improving AAD performance in low-latency settings, and supporting the development of neuro-steered hearing aids.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Research Foundation of Guangdong Province