Modified Baihu decoction therapeutically remodels gut microbiota to inhibit acute gouty arthritis

Author:

Wang Xianyang,Long Haishan,Chen Ming,Zhou Zongbo,Wu Qinlin,Xu Shijie,Li Geng,Lu Zhifu

Abstract

Background: Acute gouty arthritis (AGA) is the most common first symptom of gout, and the development of gout as a metabolic and immune inflammatory disease is also correlated with the gut microbiota. However, the mechanism of the effect of changes in the gut microbiota on AGA remains unclear. The intestinal flora can not only affect purine metabolism or regulate inflammation, but also influence the therapeutic effect of drugs on AGA. The aim of this study was to investigate the exact mechanism of modified Baihu decoction (MBD) in the treatment of AGA and whether it is related to the regulation of the structure of the intestinal flora.Methods: On the 21st day of MBD administration by continuous gavage, a rat acute gouty arthritis model was constructed using sodium urate (0.1 mL/rat, 50 mg/mL), and the ankle joint swelling was measured before and 4 h, 8 h, 24 h, and 48 h after the injection of sodium urate. After 48 h of sodium urate injection, serum, liver, kidney, ankle synovial tissue and feces were collected from rats. The collected samples were examined and analyzed using H&E, Elisa, Immunohistochemistry, Histopathology, 16S rDNA, and Biochemical analysis. To investigate the mechanism of MBD to alleviate AGA using pro-inflammatory factors and intestinal flora.Results: MBD (5.84, 35 g/kg) was administered orally to AGA rats and diclofenac sodium tablets (DS-tablets) were used as standard treatment control. Serum biochemical assessment confirmed that MBD is a safe drug for the treatment of AGA. In addition, our findings confirmed that MBD relieved AGA-related symptoms, such as toe swelling. Lowering serum levels of uric acid, IL-1β, and TGF-β1 immunohistochemical results also confirmed that MBD reduced the expression of inflammatory elements such as IL-1β, NLRP3, ASC, and Caspase-1 in synovial tissue.Furthermore, compared with control group, the 16s rDNA sequencing of AGA rat faeces revealed an increase in the relative abundance of Lachnospiraceae, Muribaculaceae, and Bifidobacteriaceae species. While the relative abundance of Lactobacillaceae, Erysipelotrichaceae, Ruminococcaceae, Prevotellaceae and Enterobacteriaceae showed a relative decrease in species abundance. Of these, the reduction in species abundance of Enterobacteriaceae was associated with a reduction in amino acid metabolism and environmental perception. After MBD therapeutic intervention, the disturbance of the intestinal flora caused by AGA was restored.Conclusion: In summary, MBD is an effective agent for the treatment of AGA, with the potential mechanism being the regulation of intestinal flora to control inflammation. This would help to promote the therapeutic effect of MBD on AGA.

Funder

Hainan Provincial Department of Science and Technology

Hainan Provincial Department of Health

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3