Rapid endothermal development of juvenile pacific bluefin tuna

Author:

Kitagawa Takashi,Abe Takaaki K.,Kubo Keitaro,Fujioka Ko,Fukuda Hiromu,Tanaka Yosuke

Abstract

An important trait of Pacific bluefin tuna (PBT) is their ability to maintain their body temperature above the ambient temperature, which allows them to occupy a wider ecological niche. However, the size at which this ability in nature develops is unclear. Therefore, this study aimed to clarify this point by monitoring the body temperature and the surrounding ambient temperature as the fish grew. PBT with fork lengths (FLs) ranging from 19.5 to 28.0 cm were implanted with archival electronic tags and released into the ocean. Data from 41 fish were obtained (recorded body and water temperatures, light level, and swimming depth (pressure) at 30-s intervals) and analyzed to elucidate the development of the ability of PBT to maintain a high body temperature. Body temperature of a PBT (< FL of ca. 40 cm) decreased in response to a vertical movement down to cooler depths, but higher body temperatures were maintained as the fish grew. The body temperature was then continuously maintained above ambient temperatures and fluctuated independently when fish attained more than 40 cm FL. Estimation of the whole-body heat-transfer coefficient and heat-production rate indicated that the latter decreased slowly with growth, while the former decreased by one order of magnitude when tuna reached 52 cm FL. Additionally, in the daytime, the whole-body heat-transfer coefficient was significantly higher than that at nighttime. Unlike other fishes including other Thunnus species, inhabiting tropical/subtropical waters, PBT rapidly acquire higher thermo-conservation ability when young, allowing capture of high-quality prey abundant in temperate waters to support high growth rates during early life.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference81 articles.

1. Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish;Altringham;J. Exp. Biol.,1997

2. Physiological and behavioural thermoregulation of juvenile yellowfin tuna Thunnus albacares in subtropical waters;Aoki;Mar. Biol.,2020

3. Mechanism of body cavity temperature regulation of chum salmon (Oncorhynchus keta) during homing migration in the North Pacific Ocean;Azumaya;Fish. Oceanogr.,2005

4. Growth, movement, and attrition of northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean, as determined by tagging;Bayliff;Inter-American Trop. Tuna Comm. Bull.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3