Activity Tracking Using Ear-Level Accelerometers

Author:

Skoglund Martin A.,Balzi Giovanni,Jensen Emil Lindegaard,Bhuiyan Tanveer A.,Rotger-Griful Sergi

Abstract

Introduction: By means of adding more sensor technology, modern hearing aids (HAs) strive to become better, more personalized, and self-adaptive devices that can handle environmental changes and cope with the day-to-day fitness of the users. The latest HA technology available in the market already combines sound analysis with motion activity classification based on accelerometers to adjust settings. While there is a lot of research in activity tracking using accelerometers in sports applications and consumer electronics, there is not yet much in hearing research.Objective: This study investigates the feasibility of activity tracking with ear-level accelerometers and how it compares to waist-mounted accelerometers, which is a more common measurement location.Method: The activity classification methods in this study are based on supervised learning. The experimental set up consisted of 21 subjects, equipped with two XSens MTw Awinda at ear-level and one at waist-level, performing nine different activities.Results: The highest accuracy on our experimental data as obtained with the combination of Bagging and Classification tree techniques. The total accuracy over all activities and users was 84% (ear-level), 90% (waist-level), and 91% (ear-level + waist-level). Most prominently, the classes, namely, standing, jogging, laying (on one side), laying (face-down), and walking all have an accuracy of above 90%. Furthermore, estimated ear-level step-detection accuracy was 95% in walking and 90% in jogging.Conclusion: It is demonstrated that several activities can be classified, using ear-level accelerometers, with an accuracy that is on par with waist-level. It is indicated that step-detection accuracy is comparable to a high-performance wrist device. These findings are encouraging for the development of activity applications in hearing healthcare.

Publisher

Frontiers Media SA

Reference44 articles.

1. Hearables in hearing care: discovering usage patterns through IoT devices. In: Antona M, Stephanidis C, editors;Johansen,2017

2. Modeling user intents as context in smartphone-connected hearing aids;Korzepa,2018

3. Context recognition for adaptive hearing-aids;Wang,2015

4. Insio NX2021

5. StarkeyLivio AI Hearing Aids 2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3