Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data

Author:

Ng Johan Y. Y.ORCID,Zhang Joni H.,Hui Stanley S.,Jiang Guanxian,Yau Fung,Cheng James,Ha Amy S.ORCID

Abstract

Background Accelerometers are widely adopted in research and consumer devices as a tool to measure physical activity. However, existing algorithms used to estimate activity intensity are wear-site-specific. Non-compliance to wear instructions may lead to misspecifications. In this study, we developed deep neural network models to classify device placement and activity intensity based on raw acceleration data. Performances of these models were evaluated by making comparisons to the ground truth and results derived from existing count-based algorithms. Methods 54 participants (26 adults 26.9±8.7 years; 28 children, 12.1±2.3 years) completed a series of activity tasks in a laboratory with accelerometers attached to each of their hip, wrist, and chest. Their metabolic rates at rest and during activity periods were measured using the portable COSMED K5; data were then converted to metabolic equivalents, and used as the ground truth for activity intensity. Deep neutral networks using the Long Short-Term Memory approach were trained and evaluated based on raw acceleration data collected from accelerometers. Models to classify wear-site and activity intensity, respectively, were evaluated. Results The trained models correctly classified wear-sites and activity intensities over 90% of the time, which outperformed count-based algorithms (wear-site correctly specified: 83% to 85%; wear-site misspecified: 64% to 75%). When additional parameters of age, height and weight of participants were specified, the accuracy of some prediction models surpassed 95%. Conclusions Results of the study suggest that accelerometer placement could be determined prospectively, and non-wear-site-specific algorithms had satisfactory accuracies. The performances, in terms of intensity classification, of these models also exceeded typical count-based algorithms. Without being restricted to one specific wear-site, research protocols for accelerometers wear could allow more autonomy to participants, which may in turn improve their acceptance and compliance to wear protocols, and in turn more accurate results.

Funder

Direct Grant for Research, The Chinese University of Hong Kong

Publisher

Public Library of Science (PLoS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3