Unraveling the World’s Longest Non-stop Migration: The Indian Ocean Crossing of the Globe Skimmer Dragonfly

Author:

Hedlund Johanna S. U.,Lv Hua,Lehmann Philipp,Hu Gao,Anderson R. Charles,Chapman Jason W.

Abstract

Insect migration redistributes enormous quantities of biomass, nutrients and species globally. A subset of insect migrants perform extreme long-distance journeys, requiring specialized morphological, physiological and behavioral adaptations. The migratory globe skimmer dragonfly (Pantala flavescens) is hypothesized to migrate from India across the Indian Ocean to East Africa in the autumn, with a subsequent generation thought to return to India from East Africa the following spring. Using an energetic flight model and wind trajectory analysis, we evaluate the dynamics of this proposed transoceanic migration, which is considered to be the longest regular non-stop migratory flight when accounting for body size. The energetic flight model suggests that a mixed strategy of gliding and active flapping would allow a globe skimmer to stay airborne for up to 230–286 h, assuming that the metabolic rate of gliding flight is close to that of resting. If engaged in continuous active flapping flight only, the flight time is severely reduced to ∼4 h. Relying only on self-powered flight (combining active flapping and gliding), a globe skimmer could cross the Indian Ocean, but the migration would have to occur where the ocean crossing is shortest, at an exceptionally fast gliding speed and with little headwind. Consequently, we deem this scenario unlikely and suggest that wind assistance is essential for the crossing. The wind trajectory analysis reveals intra- and inter-seasonal differences in availability of favorable tailwinds, with only 15.2% of simulated migration trajectories successfully reaching land in autumn but 40.9% in spring, taking on average 127 and 55 h respectively. Thus, there is a pronounced requirement on dragonflies to be able to select favorable winds, especially in autumn. In conclusion, a multi-generational, migratory circuit of the Indian Ocean by the globe skimmer is shown to be achievable, provided that advanced adaptations in physiological endurance, behavior and wind selection ability are present. Given that migration over the Indian Ocean would be heavily dependent on the assistance of favorable winds, occurring during a relatively narrow time window, the proposed flyway is potentially susceptible to disruption, if wind system patterns were to be affected by climatic change.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference130 articles.

1. Wind selectivity of migratory flight departures in birds.;Åkesson;Behav. Ecol. Soc.,2000

2. Do dragonflies migrate across the western Indian Ocean?;Anderson;J. Trop. Ecol.,2009

3. Insect fat body: Energy, metabolism, and regulation.;Arrese;Ann. Rev. Entomol.,2010

4. Records of the insects visited a weather ship located at the Ocean Weather Station “Tango” on the Pacific. II.;Asahina;Kontyû,1968

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3