Analysis of mixtures of birds and insects in weather radar data

Author:

Shi XuORCID,Drucker JacobORCID,Chapman Jason W.ORCID,Sanchez Herrera MelissaORCID,Dokter Adriaan M.ORCID

Abstract

AbstractWeather radars are increasingly used to study the spatial-temporal dynamics of airborne birds and insects. These two taxa often co-occur and separating their contributions remains a major analytical challenge. Most studies have restricted analyses to locations, seasons, and periods when one or the other taxa dominates. In this study, we describe an analytical method to estimate the proportion of birds and insects from vertical profiles of biological reflectivities, using a minimal number of assumptions on the airspeeds of birds and insects. We evaluated our method on understudied regions where airborne insect density is too high for existing approaches of studying bird migration with weather radars: the tropics (Colombia) and the southern temperate zone (Southeast Australia). Our method estimates that bird and insect signals routinely reach similar magnitudes in these regions. Retrieved patterns across daily and annual cycles reflected expected biological patterns that are indicative of migratory and non-migratory movements in both climates and migration systems. Compared to fixed airspeed thresholding, we obtain finer separation and retain more spatial-temporal complexity that is crucial to revealing aerial habitat use of both taxa. Our analytical procedure is readily implemented into existing software, empowering ecologists to explore aerial ecosystems outside the northern temperate zone, as well as diurnal migration of birds and insects that remains heavily understudied.Lay summaryWe developed a new method to differentiate between birds and insects in weather radar data.This method uses minimal assumptions about the flight speeds of birds and insects.We tested the method in regions with high insect density: the tropics (Colombia) and southern temperate zone (Southeast Australia).Our method estimated proportions of birds and insects that captured expected patterns of daily and annual movements, which were indicative of migratory and non-migratory movement of both taxa.Unlike fixed airspeed criteria for bird and insect separation, our approach provides a more detailed understanding of aerial habitat use by both birds and insects.This method can be easily added to existing software, helping ecologists study bird and insect movements in less-studied areas and ecosystems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3