Machine learning-based grassland aboveground biomass estimation and its response to climate variation in Southwest China

Author:

Liu Wenjun,Xu Cong,Zhang Zhiming,De Boeck Hans,Wang Yanfen,Zhang Liankai,Xu Xiongwei,Zhang Chen,Chen Guiren,Xu Can

Abstract

The demand for accurate estimation of aboveground biomass (AGB) at high spatial resolution is increasing in grassland-related research and management, especially for those regions with complex topography and fragmented landscapes, where grass and shrub are interspersed. In this study, based on 519 field AGB observations, integrating Synthetic Aperture Radar (SAR; Sentinel-1) and high-resolution (Sentinel-2) remote sensing images, environmental and topographical data, we estimated the AGB of mountain grassland in Southwest China (Yunnan Province and Guizhou Province) by using remote sensing algorithms ranging from traditional regression to cutting edge machine learning (ML) and deep learning (DL) models. Four models (i.e., multiple stepwise regression (MSR), random forest (RF), support vector machine (SVM) and convolutional neural network (CNN)) were developed and compared for AGB simulation purposes. The results indicated that the RF model performed the best among the four models (testing dataset: decision co-efficient (R2) was 0.80 for shrubland and 0.75 for grassland, respectively). Among all input variables in the RF model, the vegetation indices played the most important role in grassland AGB estimation, with 6 vegetation indices (EVI, EVI2, NDVI, NIRv, MSR and DVI) in the top 10 of input variables. For shrubland, however, topographical factors (elevation, 12.7% IncMSE (increase in mean squared error)) and SAR data (VH band, 11.3% IncMSE) were the variables which contributed the most in the AGB estimation model. By comparing the input variables to the RF model, we found that integrating SAR data has the potential to improve grassland AGB estimation, especially for shrubland (26.7% improvement in the estimation of shrubland AGB). Regional grassland AGB estimation showed a lower mean AGB in Yunnan Province (443.6 g/m2) than that in Guizhou Province (687.6 g/m2) in 2021. Moreover, the correlation between five consecutive years (2018–2022) of AGB data and climatic factors calculated by partial correlation analysis showed that regional AGB was positively related with mean annual precipitation in more than 70% of the grassland and 60% of the shrubland area, respectively. Also, we found a positive relationship with mean annual temperature in 62.8% of the grassland and 55.6% of the shrubland area, respectively. This study demonstrated that integrating SAR into grassland AGB estimation led to a remote sensing estimation model that greatly improved the accuracy of modeled mountain grassland AGB in southwest China, where the grassland consists of a complex mix of grass and shrubs.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3