Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization

Author:

Cheng XinmengORCID,Liu Wendou,Zhou Junhong,Wang Zizhi,Zhang ShuqiaoORCID,Liao ShengxiORCID

Abstract

The timely and accurate mapping of the spatial distribution of grasslands is crucial for maintaining grassland habitats and ensuring the sustainable utilization of resources. We used Google Earth Engine (GEE) and Sentinel-2 data for mountain grassland extraction in Yunnan, China. The differences in the normalized vegetation index in the time-series data of different ground objects were compared. February to March, during grassland senescence, was the optimum phenological stage for grassland extraction. The spectral, textural of Sentinel-2, and topographic features of the Shuttle Radar Topography Mission (SRTM) were used for the classification. The features were optimized using the recursive feature elimination (RFE) feature importance selection algorithm. The overall accuracy of the random forest (RF) classification algorithm was 91.2%, the producer’s accuracy of grassland was 96.7%, and the user’s accuracy of grassland was 89.4%, exceeding that of the cart classification (Cart), support vector machine (SVM), and minimum distance classification (MDC). The SWIR1 and elevation were the most important features. The results show that Yunnan has abundant grassland resources, accounting for 18.99% of the land area; most grasslands are located in the northwest at altitudes above 3200 m and in the Yuanjiang River regions. This study provides a new approach for feature optimization and grassland extraction in mountainous areas, as well as essential data for the further investigation, evaluation, protection, and utilization of grassland resources.

Funder

ShengxiLiao

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3