Abstract
The timely and accurate mapping of the spatial distribution of grasslands is crucial for maintaining grassland habitats and ensuring the sustainable utilization of resources. We used Google Earth Engine (GEE) and Sentinel-2 data for mountain grassland extraction in Yunnan, China. The differences in the normalized vegetation index in the time-series data of different ground objects were compared. February to March, during grassland senescence, was the optimum phenological stage for grassland extraction. The spectral, textural of Sentinel-2, and topographic features of the Shuttle Radar Topography Mission (SRTM) were used for the classification. The features were optimized using the recursive feature elimination (RFE) feature importance selection algorithm. The overall accuracy of the random forest (RF) classification algorithm was 91.2%, the producer’s accuracy of grassland was 96.7%, and the user’s accuracy of grassland was 89.4%, exceeding that of the cart classification (Cart), support vector machine (SVM), and minimum distance classification (MDC). The SWIR1 and elevation were the most important features. The results show that Yunnan has abundant grassland resources, accounting for 18.99% of the land area; most grasslands are located in the northwest at altitudes above 3200 m and in the Yuanjiang River regions. This study provides a new approach for feature optimization and grassland extraction in mountainous areas, as well as essential data for the further investigation, evaluation, protection, and utilization of grassland resources.
Subject
Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献