Increase in precipitation and fractional vegetation cover promote synergy of ecosystem services in China’s arid regions—Northern sand-stabilization belt

Author:

Wei Changwen,Su Kai,Jiang Xuebing,You Yongfa,Zhou Xiangbei,Yu Zhu,Chen Zhongchao,Liao Zhihong,Zhang Yiming,Wang Luying

Abstract

Research on synergies and trade-offs between ecosystem services (ES) contributes to a better understanding of the linkages between ecosystem functions. Relevant research mainly focuses on mountain areas, while research in arid areas is obviously insufficient. In this research, we use the northern sand-stabilization belt (NSB) as an example to explore how the synergies and trade-offs between different ES vary with the gradient of precipitation and fractional vegetation cover (FVC) over the period 2000-2020. Based on five simulated ecosystem services (habitat provision, sand-stabilization service, water conservation service, soil conservation service and carbon sequestration service), the Pearson correlation coefficient method was used to analyze the various characteristics of the trade-offs and synergies among the different ES pairs along the FVC and precipitation gradients. Results showed that: Synergies between most paired ES increased significantly with increasing precipitation and FVC. However, ES have different sensitivities to environmental change, FVC promotes bit more synergy of ES pairs than precipitation. The study also found that land use/land cover may be an important driving factor for trade-offs and synergies between paired ES. The findings demonstrate that increased precipitation and FVC promote synergy of ecosystem services in arid regions of China. In the future, it can be investigated whether anthropogenic increase in FVC in arid regions can significantly contribute to the synergy of ES. In the meantime, this study could improve our understanding of arid and semi-arid (or macro-regional) ecosystems and contribute to the development of ecosystem management and conservation measures in NSB.

Funder

Guangxi University

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3