Effects of large dams on the aquatic food web along a coastal stream with high sediment loads

Author:

Roussel Jean-Marc,Fraisse Stéphane,Dézerald Olivier,Fovet Ophélie,Pannard Alexandrine,Rodriguez-Perez Hector,Crave Alain,Gorzerino Caroline,Poupelin Maxime,Forget Guillaume,Huteau Dominique,Thomas Alban,Chevé Manuel,Soissons Laura,Piscart Christophe

Abstract

The contribution of two basal energy sources – detrital organic matter and primary producers – as part of aquatic food webs varies typically along river continua. A host of barriers to river flow increase the water residence time and sediment and nutrient retention in reservoirs worldwide, and potentially alter the balance between detritus-based and algae-based energy pathways in the downstream food webs. We explored this issue on the Sélune River (Normandy, France), a small coastal stream that drains an agricultural catchment with high sediment runoff. Seasonal measurements of the following parameters were compared upstream and downstream of the reservoirs of two large dams (16 m and 36 m high): sediment fluxes, nutrient and chlorophyll a concentrations, algal communities in the epilithic biofilm (taxonomic composition, biomass and growth), and benthic invertebrate communities (abundance and trophic guild structure). As anticipated, annual sediment fluxes were much lower downstream of the reservoirs, where significant decreases in water turbidity, phosphate and silicate concentrations were recorded. A higher chlorophyll a concentration in water and a higher contribution of pelagic algae taxa to the photosynthetic biofilm suggested drifting and deposition of reservoir-borne phytoplankton downriver. Photosynthetic biofilm growth was higher downstream of the reservoirs in spring and fall, and so was the abundance of herbivores in the invertebrate community, notably scrapers and algae eaters. Energy pathways within riverine food webs were traced using stable isotope analyses of carbon (C) and nitrogen in the tissues of aquatic consumers (invertebrates and fish). Mixing models revealed a discontinuity in the origin of the C entering the food webs along the river continuum, confirming a greater contribution of algal C to aquatic consumers downstream of the reservoirs. These results illustrate mechanisms whereby large reservoirs can modulate C flow in food webs along a small coastal river with high sediment loads, and make it possible to anticipate the effects of dam removal on the future river ecosystem.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3