Persistent disconnect between flow restoration and restoration of river ecosystem functions after the removal of a large dam on the Sélune River

Author:

Piscart Christophe,Dézerald Olivier,Pellan Laura,Le Bris Nathalie,Rodríguez-Pérez Héctor,Beauverger Thibaut,Huteau Dominique,Roussel Jean-Marc

Abstract

The removal of the two dams on the Sélune River since 2019 has led to profound changes in the aquatic ecosystem. Lentic habitats bordered by forest had shifted to new conditions (running water and sparsely vegetated riverbanks) therefore shaping organisms’ assemblies. We studied how the reestablishment of aquatic lotic habitats in interaction with riparian vegetation could mediate the restoration of important ecological functions in the new river. Six stations located along the river continuum were surveyed for 3 years after dam removal: two control stations upstream the former reservoir, three restored stations within the former reservoir, and one control station downstream. We monitored physico-chemical characteristics, phytobenthos biomass and the river’s benthic metabolism, and assessed the functional composition of macroinvertebrate communities. We compared the recorded variables among upstream, downstream and restored sampling stations. We observed a rapid recolonization by invertebrates, but a still low phytobenthic primary production in restored stations. Such a low primary productivity was also reflected in the functional composition of invertebrate communities. Three years after dam removal, there was still a significant time lag between communities recovery and expected ecosystem functioning restoration. We observed a quick colonization by aquatic running-water invertebrate communities of new lotic reaches, but a slower recovery of important ecological functions rates such as those observed in control stations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3