Biosonar discrimination of fine surface textures by echolocating free-tailed bats

Author:

Smotherman Michael S.,Croft Thomas,Macias Silvio

Abstract

Echolocating bats are able to discriminate between different surface textures based on the spectral properties of returning echoes. This capability is likely to be important for recognizing prey and for finding suitably perching sites along smooth cave walls. Previous studies showed that bats may exploit echo spectral interference patterns in returning echoes to classify surface textures, but a systematic assessment of the limits of their discrimination performance is lacking and may provide important clues about the neural mechanisms by which bats reconstruct target features based on echo acoustic cues. We trained three Mexican free-tailed bats (Tadarida brasiliensis) on a Y-maze to discriminate between the surfaces of 10 different sheets of aluminum-oxide abrasive sandpapers differing in standardized grit sizes ranging from 40 grit (coarse, 425 μm mean particle diameter) to 240 grit (fine, 54 μm mean particle diameter). Bats were rewarded for choosing the coarsest of two choices. All three bats easily discriminated all abrasive surfaces from a smooth plexiglass control and between all sandpaper comparisons except the two with the smallest absolute difference in mean particle sizes, the 150 vs. 180 grit (92 vs. 82 μm) and the 220 vs. 240 grit (68 vs. 54 μm) surfaces. These results indicate that echolocating free-tailed bats can use slight variations in the echo spectral envelope to remotely classify very fine surface textures with an acuity of at least 23 μm, which rivals direct tactile discrimination performance of the human hand.

Funder

Office of Naval Research

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3