The Value of Hazard Quotients in Honey Bee (Apis mellifera) Ecotoxicology: A Review

Author:

Carlson Emily A.,Melathopoulos Andony,Sagili Ramesh

Abstract

Estimates of pesticide application hazards have grown to be one of the most common methodologies for evaluating the impact of pest management practices on honey bees. Typically, hazards are estimated by calculating a Hazard Quotient (HQ), which is based on acute toxicity data for different pesticides and the quantity of those pesticides applied to a field or detected on bees and matrices associated with their hive (honey, wax, pollen, and/or bee bread). Although use of HQ is widespread, there have been few reviews of this methodology, particularly with focus on how effective this method is at predicting effects of pesticides on hives. We evaluated 36 relevant papers, containing calculations of HQ to estimate hazards to honey bees. We observed that HQ was primarily calculated using two different approaches: (1) from the concentration of pesticides in the food, hive, or tissues of honey bees or (2) using the field application rate of the active ingredient as the estimation of pesticide hazard. Within and between HQ calculation methods, thresholds vary widely with some HQ thresholds set below 1 and others set at 10,000. Based on our review we identify key weakness with current HQ methodology and how studies relate HQ to honey bee health endpoints. First, HQ thresholds from studies of pesticides in hives are not based on the same pesticide consumption models from the EPA, potentially overestimating the risk of impacts to colonies. Conversely, HQ estimates calculated from field application rates are not based on eco-toxicological estimates of field exposure, resulting in an overestimation of pesticide reaching colonies. We suggest it is for these reasons that there is poor correspondence between HQ and field-level honey bee health endpoints. Considering these challenges, HQ calculations should be used cautiously in future studies and more research should be dedicated to field level exposure models.

Funder

Foundation for Food and Agriculture Research

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3