Abstract
AbstractFor over a decade, beekeepers have experienced high losses of honey bee (Apis mellifera L.) colonies due to a variety of stressors including pesticide exposure. Some of these chemical stressors may residually remain in the colony comb and food resources (pollen and nectar) of failed colonies and be later re-used by beekeepers when splitting and building back new colonies. The practice of re-using comb from previously perished colonies (termed “deadout”) is common in beekeeping practice, but its role in affecting colony health is not well understood. Here, we evaluate the impact of reused, pesticide-contaminated “deadout” combs on colony function during the process of replacing a queen bee. Queenless microcolonies were established to monitor queen rearing capacity in two treatment groups: (1) colonies given frames containing food resources from deadout colonies in control “clean” apiaries and, (2) colonies given frames containing “contaminated” resources from deadout colonies originating from apiaries experiencing chronic pesticide exposure from widespread systemic pesticide pollution (including neonicotinoid insecticides: clothianidin and thiamethoxam). Results indicate that colonies given pesticide-contaminated resources produced fewer queen cells per colony and had a lower proportion of colonies successfully raising a functional, diploid egg-laying queen. This research highlights the deleterious effects of re-using deadout combs from colonies previously lost due to pesticide contamination.
Funder
Project Apis m.
University of Nebraska-Lincoln Agricultural Research Division
Kimmel Foundation
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献