Machine learning algorithms for lithological mapping using Sentinel-2 and SRTM DEM in highly vegetated areas

Author:

Chen Yansi,Dong Yulong,Wang Yunchen,Zhang Feng,Liu Genyuan,Sun Peiheng

Abstract

Lithological mapping in highly vegetated areas using remote sensing techniques poses a significant challenge. Inspired by the concept of “geobotany”, we attempted to distinguish lithologies indirectly using machine learning algorithms (MLAs) based on Sentinel-2 and SRTM DEM in Zhangzhou City, Fujian Province. The study area has high vegetation cover, with lithologies that are largely obscured. After preprocessing such as cloud masking, resampling, and median image synthesis, 17 spectral bands and features from Sentinel-2 and 9 terrain features from DEM were extracted. Five widely used MLAs, MD, CART, SVM, RF, and GBDT, were trained and validated for lithological mapping. The results indicate that advanced MLAs, such as GBDT and RF, are highly effective for nonlinear modeling and learning with relative increases reaching 8.18%∼11.82% for GBDT and 6.36%∼10% for RF. Compared with optical imagery or terrain data alone, combining Sentinel-2 and DEM significantly improves the accuracy of lithological mapping, as it provides more comprehensive and precise spectral characteristics and spatial information. GBDT_Sen+DEM utilizing integrated data achieved the highest classification accuracy, with an overall accuracy of 63.18%. This study provides a case study for lithological mapping of areas with high vegetation cover at the local level. This also reinforces the idea that merging remote sensing and terrain data significantly enhances the precision and reliability of the lithological mapping methods.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3