A Novel Sample Generation Method for Deep Learning Lithological Mapping with Airborne TASI Hyperspectral Data in Northern Liuyuan, Gansu, China

Author:

Liu Huize1,Wu Ke12ORCID,Zhou Dandan1,Xu Ying3ORCID

Affiliation:

1. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

3. National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China

Abstract

High-resolution and thermal infrared hyperspectral data acquired from the Thermal Infrared Airborne Spectrographic Imager (TASI) have been recognized as efficient tools in geology, demonstrating significant potential for rock discernment. Deep learning (DL), as an advanced technology, has driven substantial advancements in lithological mapping by automatically extracting high-level semantic features from images to enhance recognition accuracy. However, gathering sufficient high-quality lithological samples for model training is challenging in many scenarios, posing limitations for data-driven DL approaches. Moreover, existing sample collection approaches are plagued by limited verifiability, subjective bias, and variation in the spectra of the same class at different locations. To tackle these challenges, a novel sample generation method called multi-lithology spectra sample selection (MLS3) is first employed. This method involves multiple steps: multiple spectra extraction, spectra combination and optimization, lithological type identification, and sample selection. In this study, the TASI hyperspectral data collected from the Liuyuan area in Gansu Province, China, were used as experimental data. Samples generated based on MLS3 were fed into five typical DL models, including two-dimensional convolutional neural network (2D-CNN), hybrid spectral CNN (HybridSN), multiscale residual network (MSRN), spectral-spatial residual network (SSRN), and spectral partitioning residual network (SPRN) for lithological mapping. Among these models, the accuracy of the SPRN reaches 84.03%, outperforming the other algorithms. Furthermore, MLS3 demonstrates superior performance, achieving an overall accuracy of 2.25–6.96% higher than other sample collection methods when SPRN is used as the DL framework. In general, MLS3 enables both the quantity and quality of samples, providing inspiration for the application of DL to hyperspectral lithological mapping.

Funder

National Natural Science Foundation of China

Open Fund of Wenzhou Future City Research

Hebei Key Laboratory of Ocean Dynamics, Resources and Environments

Open Fund of State Key Laboratory of Remote Sensing Science

Global Change and Air-Sea Interaction II

Open Fund of Key Laboratory of Space Ocean Remote Sensing and Application, MNR

Foundation of State Key Laboratory of Public Big Data

Open Fund of Key Laboratory of Regional Development and Environmental Response

Fundamental Research Funds for the Central Universities, China University of Geosciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3