Differential accumulation of cardenolides from Asclepias curassavica by large milkweed bugs does not correspond to availability in seeds or biological activity on the bug Na+/K+-ATPase

Author:

Rubiano-Buitrago Paola,Pradhan Shrikant,Grabe Veit,Aceves-Aparicio Alfonso,Paetz Christian,Rowland Hannah M.

Abstract

Milkweed–herbivore systems are characterized by cardenolide chemical defenses and specialized herbivore adaptations such as physiological target site insensitivity. Cardenolide defenses in milkweeds can vary in terms of the total concentration, differences in the polarity of individual cardenolides, and the substitution of the steroidal structures that can contribute to the molecule's reactivity. The variability in cardenolide defenses could represent the plant's response to natural selection and adaptation of resistant herbivores and is a characteristic of phenotype-matching between defensive and offensive traits resulting from coevolution. Here, we test the phenotypic match of the cardenolide composition of seeds of Asclepias curassavica and those sequestered by nymphs and adults of the specialized seed herbivore Oncopeltus fasciatus, combined with tests of the inhibitory capacity of a subset of seed cardenolides against the Na+/K+-ATPase of O. fasciatus and a non-adapted insect (Drosophila melanogaster). We compare this with the inhibitory capacity against the highly sensitive porcine Na+/K+-ATPase. Among the five most abundant cardenolides present in milkweed seeds, glucopyranosyl frugoside, glucopyranosyl gofruside, and glucopyranosyl calotropin were significantly more abundant in the seeds than in the adults and nymphs; the bugs contained higher concentrations of the deglucosylated compounds. The most abundant compound, glucopyranosyl frugoside, was also the most inhibitory for O. fasciatus, but O. fasciatus was significantly more tolerant to all compounds compared to D. melanogaster and the highly sensitive porcine enzyme. Our results add to the evidence that O. fasciatus sequesters specific individual cardenolides from its Asclepias host plants that are not directly linked to the concentration and inhibitory potency.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. Cardenolide glycosides from the seeds of Asclepias curassavica;Abe;Chem. Pharm. Bull.,1992

2. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores;Agrawal;Evol. Ecol. Res.,2005

3. Functional evidence supports adaptive plant chemical defense along a geographical cline;Agrawal;Proc. Natl. Acad. Sci.,2022

4. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions;Agrawal;New Phytol.,2012

5. Chemical constituents and pharmacological effects of Asclepias Curassavica – a review;Al-Snafi;Asian J. Pharm. Res.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3