Functional evidence supports adaptive plant chemical defense along a geographical cline

Author:

Agrawal Anurag A.12ORCID,Espinosa del Alba Laura3,López-Goldar Xosé1,Hastings Amy P.1,White Ronald A.1ORCID,Halitschke Rayko4ORCID,Dobler Susanne5ORCID,Petschenka Georg3ORCID,Duplais Christophe6

Affiliation:

1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853

2. Department of Entomology, Cornell University, Ithaca, NY 14853

3. Institute of Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany

4. Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

5. Molecular Evolutionary Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany

6. Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY 14456

Abstract

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host’s range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed ( Asclepias syriaca ) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na + /K + -ATPase); there was little variation among compounds in inhibition of an unadapted Na + /K + -ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltu s. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3