Fire dynamics and driving mechanisms on the Eastern Coast of China since the Late Pleistocene: evidence from charcoal records on Shengshan Island

Author:

Wang Zhigang,Wang Cuiping,Zhang Yao,Cheng Yuanyu,Ren Shaofang,Yi Chengxin,Wang Hui,Zhou Limin,Qian Peng,Zheng Xiangmin

Abstract

Fires play a significant role in ecosystems, exerting a profound influence on climate, vegetation, and geochemical cycles, while being reciprocally affected by these factors. The reconstruction of past fire events serves as a valuable window into understanding environmental changes over time. To investigate the history of ancient fires on the Eastern Coast of China, we conducted the first charcoal analysis on a loess profile of Shengshan Island (East China Sea). Along with other biological and geochemical proxies, we successfully reconstructed the ancient fire dynamics and elucidated their driving mechanisms in this region since the Late Pleistocene. Our initial findings revealed a peak in charcoal concentration during the 60-50 ka period, but after calibrating for sedimentation rate, the concentration significantly decreased. Fire activities remained weak during 50-30 ka, likely due to the scarcity of combustible materials. Between 30-12 ka, fires were frequent in the early period, while gradually diminishing during the later stage. Dry climate and dense vegetation likely attributed to frequent fires in early period, while some extreme events (e.g., sudden change in temperature) may have decreased the fire frequency in later period. The Holocene (began ~12 ka) evidenced the most frequent fire events as a high charcoal concentration was recorded, likely caused by human activities. After comparing our findings with other paleoecological records from surrounding areas, we confirmed the accuracy of our reconstruction of ancient fires. This reconstruction captures not only local shifts but also broader regional changes. Overall, our study highlights the importance of calibrating sedimentation rate in charcoal profiles, while also contributing to an enhanced understanding of environmental changes along the Eastern Coast of China since the Late Pleistocene.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Frontiers Media SA

Reference93 articles.

1. Measurement of soil organic matter turnover using 13C natural abundance;Balesdent,1996

2. Biotic controls on Holocene fire frequency in a temperate mountain forest, Czech Republic;Bobek;J. Quaternary Sci.,2018

3. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems;Bond;Trends Ecology Evolution,2005

4. Magnetic susceptibility, petrofabrics and strain;Borradaile;Tectonophysics,1988

5. Fire in the earth system;Bowman;Science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3