Patch-level processes of vegetation underlying site-level restoration patterns in a megatidal salt marsh

Author:

Norris Gregory S.,Virgin Spencer D. S.,Schneider Dylan W.,McCoy Emily M.,Wilson Jessica M.,Morrill Kirby L.,Hayter Lionel,Hicks Meagan E.,Barbeau Myriam A.

Abstract

Vegetation patterns during salt marsh restoration reflect underlying processes related to colonization, reproduction, and interactions of halotolerant plants. Examining both pattern and process during recovery is valuable for understanding and managing salt marsh restoration projects. We present a decade of vegetation dynamics during salt marsh restoration (2011–2020) at a study site in the Bay of Fundy with megatidal amplitudes, strong currents, cold winter temperatures, and ice. We mainly investigated reproduction (asexual and sexual) and associated spread rates of Spartina grasses, and their health-related states (stem density, canopy height, and percent flowering) which help inform the probability of processes occurring. We also estimated modes of colonization and began quantifying the effects of interspecific interactions and environmental conditions on plant state. Spartina pectinata was the only pastureland plant to survive dike-breaching and saltwater intrusion in 2010; however, it was stunted compared to reference plants. Spartina pectinata patches remained consistent initially, before decreasing in size, and disappearing by the fifth year (2015). This early dynamic may provide initial protection to a developing salt marsh before Spartina alterniflora becomes established. Spartina alterniflora first colonized the sites in year 2 (2012), likely via deposition of rhizomal material, and then spread asexually before seedlings (sexual reproduction) appeared in year 4 (2014). Vegetation cover subsequently increased greatly until near-complete in year 9 (2019). The early successional dynamics of S. pectinata and S. alterniflora occurred spatially independently of each other, and likely contributed to sediment retention, creating an improved environment for S. patens, the dominant high marsh species in our region. Spartina patens have been slowly spreading into restoration sites from high elevation areas since year 6 (2016). We expect that competition between S. alterniflora and S. patens will result in the typical distinct zonation between high and low marsh zones. A next study will use the quantified processes for spatial-explicit modeling to simulate patterns of vegetation recovery, and to evaluate different salt marsh restoration strategies for the Bay of Fundy and elsewhere. Thus, proper identification and quantification of pattern-building processes in salt marsh vegetation recovery, the focus of our present study, was an essential step.

Funder

Natural Sciences and Engineering Research Council of Canada

Environment and Climate Change Canada

Natural Resources Canada

Employment and Social Development Canada

University of New Brunswick

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3