Autumn migrating passerines at a desert edge: Do birds depart for migration after reaching a threshold fuel load or vary it according to the rate of fuel deposition?

Author:

Zinßmeister Daniela,Troupin David,Sapir Nir

Abstract

Fuel deposition rate is predicted to determine departure fuel load during stopover in two models of optimal behavior of migrating birds. Yet, near ecological barriers, such as wide deserts, birds may switch to a different strategy of departing with just enough fuel to enable the long cross-barrier flight, thus reaching a threshold of fuel load regardless of the rate of fuel deposition. To test these predictions we studied autumn migrating Red-backed Shrikes (Lanius collurio) before they departed for a ∼2,000 km journey across the Sahara Desert. The body mass of fourteen individuals was measured on a daily basis throughout their stopover using field-deployed scales while being tracked by the ATLAS biotelemetry system in the Hula Valley, Israel. Statistical analysis found that the natural log of departure fuel load was positively related to both the capture fuel load and the fuel deposition rate. Hence, the results of this analysis suggest that bird condition at departure depended on the rate of fuel deposition, as predicted by models of time-minimization migration and the minimization of the total energy cost of migration. Departure fuel load and stopover duration were negatively related to each other as birds that remained for a long time in stopover departed with relatively low fuel loads. These findings suggest that even near a wide ecological barrier, departure fuel load is sensitive to the rate of fuel deposition, especially at lower values of fuel deposition rate. Birds that were able to accumulate fuel at higher rates showed a nearly constant departure fuel load and as such we could not exclude the possibility that the birds were trying to reach a certain threshold of fuel stores. Randomized 1,000 repeats of the aforementioned correlation suggest that the correlation between fuel deposition rate and the log of departure fuel load is valid and does not represent a spurious result. Following bird migration simulation using the program Flight, we conclude that fuel loads allowed most individual to accomplish the journey across the desert. Our findings suggest high between-individual variation in stopover parameters with likely consequences for bird migration performance and survival.

Funder

Israel Science Foundation

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3