Effects of nitrogen addition and seasonal change on arbuscular mycorrhizal fungi community diversity in a poplar plantation

Author:

Peng Sili,Ban Mingjiang,Xing Wei,Ge Zhiwei,Mao Lingfeng

Abstract

Arbuscular mycorrhizal (AM) fungi play a crucial role in carbon (C), nitrogen (N), and phosphorous (P) biogeochemical cycling. Therefore, it is essential to determine the seasonal responses of the AM fungal community to N addition to understanding better the ecological processes against a background of intensified N deposition. Based on an ongoing field simulation experiment with five N addition levels (0, 5, 10, 15, and 30 gN·m−2·a−1) in a 5-year-old poplar plantation at Dongtai Forest Farm in Yancheng, Jiangsu province, eastern China, soil physicochemical properties, the root colonization rate, and the rhizosphere soil AM fungal community diversity and composition in four seasons (summer, autumn, winter, and spring) were investigated. Meanwhile, the relationships between the characteristics of the AM fungal community and soil environmental factors were analyzed. High-throughput sequencing showed that the dominant genera in the poplar plantation were Glomus (average relative abundance 87.52%), Diversispora (9.62%), and Acaulospora (1.85%). The addition of N significantly increased the root colonization rate in spring. The diversity of the AM fungal community (Chao and Shannon indexes) was primarily affected by seasonal change rather than N addition, and the diversity in summer was significantly lower than in the other three seasons. Redundancy analysis showed that soil temperature, available P, total P, and pH significantly affected the structure of the AM fungal community. It can be concluded N addition primarily influenced the root colonization rate, whereas seasonal change had a notable effect on the AM fungal community diversity. Although seasonal change and N addition greatly influenced the composition, seasonal change exerted a more substantial effect than N addition. These results will improve our understanding of the underground ecological processes in poplar plantation ecosystems.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3