Fine Root Biomass Mediates Soil Fauna Community in Response to Nitrogen Addition in Poplar Plantations (Populus deltoids) on the East Coast of China

Author:

Bian Haixue,Geng Qinghong,Xiao Hanran,Shen Caiqin,Li Qian,Cheng Xiaoli,Luo Yiqi,Ruan Honghua,Xu XiaORCID

Abstract

Soil fauna is critical for maintaining ecosystem functioning, and its community could be significantly impacted by nitrogen (N) deposition. However, our knowledge of how soil-faunal community composition responds to N addition is still limited. In this study, we simulated N deposition (0, 50, 100, 150, and 300 kg N ha−1 year−1) to explore the effects of N addition on the total and the phytophagous soil fauna along the soil profile (0–10, 10–25, and 25–40 cm) in poplar plantations (Populus deltoids) on the east coast of China. Ammonium nitrate (NH4NO3) was dissolved in water and sprayed evenly under the canopy with a backpack sprayer to simulate N deposition. Our results showed that N addition either significantly increased or decreased the density (D) of both the total and the phytophagous soil fauna (Dtotal and Dp) at low or high N addition rates, respectively, indicating the existence of threshold effects over the range of N addition. However, N addition had no significant impacts on the number of groups (G) and diversity (H) of either the total or the phytophagous soil fauna (Gtotal, Gp and Htotal, Hp). With increasing soil depth, Dtotal, Dp, Gtotal, and Gp largely decreased, showing that the soil fauna have a propensity to aggregate at the soil surface. Htotal and Hp did not significantly vary along the soil profile. Importantly, the threshold effects of N addition on Dtotal and Dp increased from 50 and 100 to 150 kg N ha−1 year−1 along the soil profile. Fine root biomass was the dominant factor mediating variations in Dtotal and Dp. Our results suggested that N addition may drive changes in soil-faunal community composition by altering belowground food resources in poplar plantations.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3