Effect of Polymer Mixtures on Physical-Chemical Properties of Sandy Soil and Plant Growth

Author:

Yang Qingwen,Pei Xiangjun,Fu Cheng

Abstract

Serious desertification problems were found in alpine grassland of the Qinghai-Tibet Plateau, China. The rehabilitation progress of degraded grassland is slow under natural conditions that have low rainfall and large evaporation. Organic agent-solidified soil is one of the most important measurements that limit desertification and grassland conservation-restoration. However, the characteristics of vegetation growth and development in solidified soil need to be studied in depth. This research is based on the modified carboxymethyl cellulose (MCMC) of independent development. Based on the sand soil taken from moving sandy land of Zoige, potted plants were tested in the environmental chamber at the laboratory. The physical, chemical, and biological characteristics of root soil were monitored for more than 7 months. As a result, the plant biomass in the experimental group increased, lodging rate decreased, drought tolerance and survival rate increased, and the number of plant roots and root surface area index, root cross-sectional area ratio, and root volume ratio increased compared with the matched group. It is shown that MCMC can effectively promote plant root development and improve plant drought tolerance and lodging resistance. We also found that, compared with the matched group, the values of the rhizosphere soil mass, root soil mass, and soil crust layer thickness of the experimental group were much higher, meaning that MCMC has strengthened the root soil-fixation ability and soil-crusting ability of plants. The soil nutrient indexes and bioactivity of the experimental group were higher than the matched group, indicating that MCMC has a positive influence on soil maturation. The quantitative description model of soil aging enhancement of MCMC material during root growth and development was established to explore the soil-fixation mechanism of MCMC plant root succession and provided an important scientific basis and technical support for the conservation and restoration of alpine grassland desertification grassland.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3