Analysis of the formation mechanism of debris flows after earthquakes – A case study of the Legugou debris flow

Author:

He Na,Fu Qixuan,Zhong Wei,Yang Zhiquan,Cai XianQing,Xu Linjuan

Abstract

By means of the Graphic Method, Gray Correlation Method and Frequency Method, the total amount of loose solid materials, the amount of loose solid materials per unit area in the source area, and the risk degree and critical rainfall of the study area are determined, respectively. On the basis of the calculation results, the total amount of loose solid materials is 57.2 × 104 m3, the amount of loose solid materials per unit area is 0.13 m3/m2 (greater than 0.1 m3/m2), which better meets the initiation conditions for dilute debris flow. The Hazard Evaluation Model of Debris Flow in earthquake areas is established by the gray correlation method and the hazard index H = 0.725 is determined. According to the hazard classification standards for debris flows in earthquake areas, the debris flow in Lecugou was moderate after the earthquake. The critical rainfall value of 1H, calculated by the frequency method, ranged from 17.45 to 22.21 mm (Re = 25 mm) and 8.17 to 13.01 mm (Re = 50 mm). The critical rainfall value at 10 min ranged from 6.23 to 8.44 mm (Re = 25 mm) and 2.92 to 5.13 mm (Re = 50 mm), respectively. The maximum rainfall intensity of 45.5 mm/h was reached between 10:00 and 11:00 on July 29, 2019 and the cumulative rainfall reached 144 mm, far exceeding the critical rainfall of Legugou. Under the influence of earthquakes and human activities, the loose solid source amount and loose solid source amount per unit area increased greatly, and the critical rainfall for debris flow after earthquakes decreased sharply, which induced debris flows under the influence of heavy rainfall. This research will be helpful for the establishment of monitoring and early warning systems based on artificial intelligence methods, and can greatly improve the effectiveness of disaster prevention and mitigation.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3