Rhizosphere microbial characteristics of pioneer plant Oxyria sinensis Hemsl. in abandoned Pb-Zn mining area

Author:

Tang Hong,Yang Jie,Yuan Xin-qi,Wang Si-chen,Li Lin-yang,Duan Chang-qun

Abstract

Oxyria sinensis has the characteristics of drought resistance, barren resistance, pollution resistance and clonal reproduction, and has the potential to be developed as a restoration plant (pioneer plant) for vegetation restoration and heavy metal pollution control in mining wasteland. In this study, the rhizosphere microbial communities of the pioneer plant O. sinensis growing in a lead-zinc mine wasteland and the rhizosphere microbial communities of O. sinensis growing in adjacent non-mining areas were studied by field investigation. There were significant differences in the composition of microbial communities between the rhizosphere soil of O. sinensis and the bare soil. There were significant differences in the composition of soil microbial communities between the non-mining area control and the lead-zinc mine wasteland. Compared with the non-mining area control, the rhizosphere soil of O. sinensis in the lead-zinc mine wasteland had a unique microbial community. The dominant bacteria were Nitrospirae, Chloroflexi, Proteobacteria, Actinobacteria, Ascomycota and Kickxellomycota. Further gene function prediction showed that the metabolic pathway sequences related to heavy metal ion transport, heavy metal resistance and repair in the rhizosphere soil of O. sinensis were more abundant than those in the control. The dominant ecological functional groups of fungi in the rhizosphere soil of O. sinensis were saprophytic flora and pathological flora. Plenodomus, Surfurifusis, Sphingomonas, Filobasidium and Articulospora were enriched in the rhizosphere soil of O. sinensis in the abandoned land of lead-zinc mining area, and had high tolerance to heavy metals in the soil, indicating that O. sinensis can recruit heavy metal-tolerant microbial groups to promote its survival and adaptation in the abandoned land of the mining area.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3