The communities of ectomycorrhizal fungal species associated with Betula pendula Roth and Pinus sylvestris L. growing in heavy-metal contaminated soils

Author:

Bierza WojciechORCID,Bierza Karolina,Trzebny Artur,Greń Izabela,Dabert Miroslawa,Ciepał Ryszard,Trocha Lidia K.

Abstract

Abstract Aims Pioneer tree species such as Betula pendula and Pinus sylvestris encroach soils contaminated with heavy metals (HMs). This is facilitated by ectomycorrhizal fungi colonizing tree roots. Thus, we evaluated the ectomycorrhizal fungal (EMF) communities of B. pendula and P. sylvestris growing in HM-contaminated soils compared to non-contaminated soils. We also studied the effect of HMs and soil properties on EMF communities and soil fungal biomass. Methods Roots of B. pendula and P. sylvestris were collected from three HM-contaminated sites and from two non-contaminated sites located in Poland. EMF species were identified using DNA barcoding. Soil fungal biomass was determined by soil ergosterol. Results B. pendula and P. sylvestris growing in HM-contaminated soils had similar EMF communities, where Scleroderma, Rhizopogon and Russula as well as ectomycorrhizae of the long-distance exploration type dominated. Among all of the examined soil factors studied, toxicity index (TITotal) was the most significant factor shaping the composition of EMF communities. Despite significant differences in the structure of the EMF communities of trees growing in HM-contaminated sites compared to control sites, no differences in overall diversity were observed. Conclusions Only well-adapted EMF species can survive toxic conditions and form ectomycorrhizal symbiosis with encroaching trees facilitating the forest succession on contaminated soils.

Funder

University of Silesia in Katowice

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3