Toward Efficient Bayesian Approaches to Inference in Hierarchical Hidden Markov Models for Inferring Animal Behavior

Author:

Sacchi Giada,Swallow Ben

Abstract

The study of animal behavioral states inferred through hidden Markov models and similar state switching models has seen a significant increase in popularity in recent years. The ability to account for varying levels of behavioral scale has become possible through hierarchical hidden Markov models, but additional levels lead to higher complexity and increased correlation between model components. Maximum likelihood approaches to inference using the EM algorithm and direct optimization of likelihoods are more frequently used, with Bayesian approaches being less favored due to computational demands. Given these demands, it is vital that efficient estimation algorithms are developed when Bayesian methods are preferred. We study the use of various approaches to improve convergence times and mixing in Markov chain Monte Carlo methods applied to hierarchical hidden Markov models, including parallel tempering as an inference facilitation mechanism. The method shows promise for analysing complex stochastic models with high levels of correlation between components, but our results show that it requires careful tuning in order to maximize that potential.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3