Research on the risk evaluation of enterprises' carbon compliance failure

Author:

Wang Xu,Xu Ye,Li Wei

Abstract

In order to mitigate global warming and help the country achieve its carbon peaking and carbon neutrality targets at the earliest possible time, the emission-control companies should accomplish the carbon compliance in accordance with relevant national policies and regulations. However, these companies frequently face the failure risk of carbon compliance subjected to various factors, including the national carbon quota policy, local carbon market situation, the verification of carbon offset projects, as well as the effectiveness of carbon reduction technologies. To help the enterprises avoid the risk of carbon-compliance failure and design rational carbon asset management strategy, in this research, the innovative combination of interpretive structural modeling (ISM), Bayesian network model, risk calculation and sensitivity analysis method was formulated. Firstly, the ISM method was used to establish a hierarchical relationship of risk factors that contribute to the failure of carbon compliance. Secondly, the probability prediction model of carbon-compliance failure risk based on the Bayesian network model was established by aid of the Netica software. Thirdly, the risk value of enterprise's carbon compliance failure was quantitatively calculated based on its production operation and carbon asset management. Finally, the sensitivity analysis method was used to identify critical risk factors and design risk control measures for six well-known domestic enterprises, laying good foundation for improving the success rate of carbon compliance and facilitating low-carbon green transformation. Compared to traditional qualitative risk assessment method, this combined approach is capable of realizing the quantitative evaluation of failure risk based on comprehensive investigation and analysis of the production and operational situation, which provides effective technical support to enhance enterprise's compliance awareness and improve low carbon competitiveness.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3