Vegetation Assembly, Adaptive Strategies and Positive Interactions During Primary Succession in the Forefield of the Last Venezuelan Glacier

Author:

Llambí Luis D.,Melfo Alejandra,Gámez Luis E.,Pelayo Roxibell C.,Cárdenas Mariana,Rojas Cherry,Torres Jesús E.,Ramírez Nerio,Huber Bárbara,Hernández Jesús

Abstract

Glaciers are receding at unprecedented rates in the alpine tropics, opening-up new areas for ecosystem assembly. However, little is known about the patterns/mechanisms of primary succession during the last stages of glacier retreat in tropical mountains. Our aim was to analyze soil development and vegetation assembly during primary succession, and the role of changing adaptive strategies and facilitative interactions on these processes at the forefront of the last Venezuelan glacier (Humboldt Peak, 4,940 m asl). We established a chronosequence of four sites where the glacier retreated between 1910 and 2009. We compared soil organic matter (SOM), nutrients and temperatures inside vs. outside biological soil crusts (BSCs) at each site, estimated the cover of lichen, bryophyte and vascular plant species present, and analyzed changes in their growth-form abundance and species/functional turnover. We also evaluated local spatial associations between lichens/bryophytes and the dominant ruderal vascular plant (the grass Poa petrosa). We found a progressive increase in SOM during the first century of succession, while BSCs only had a positive buffering effect on superficial soil temperatures. Early seral stages were dominated by lichens and bryophytes, while vascular plant cover remained low during the first six decades, and was almost exclusively represented by wind dispersed/pollinated grasses. There was a general increase in species richness along the chronosequence, but it declined in late succession for lichens. Lichen and bryophyte communities exhibited a higher species turnover than vascular plants, resulting in the loss of some pioneer specialists as succession progressed. Lichen and bryophyte species were positively associated with safe-sites for the colonization of the dominant ruderal grass, suggesting a possible facilitation effect. Our results indicate that lichens and bryophytes play a key role as pioneers in these high tropical alpine environments. The limited initial colonization of vascular plants and the progressive accumulation of species and growth-forms (i.e., direct succession) could be linked to a combination of severe environmental filtering during early seral stages and limitations for zoochoric seed dispersal and entomophilic/ornithophilic pollination. This could potentially result in a slow successional response of these ecosystems to accelerated glacier loss and climate change.

Funder

National Geographic Society

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference72 articles.

1. Circulación atmosférica y tipos de climas;Andressen;GeoVenezuela 2. Medio Físico y Recursos Naturales,2007

2. Living at the edge: increasing stress for plants 2–13 years after the retreat of a tropical Glacier.;Anthelme;Front. Ecol. Evol.,2021

3. Measuring plant interactions: a new comparative index.;Armas;Ecology,2014

4. Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation.;Bardgett;Soil Biol. Biochem.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3