Snow Cover and Snow Persistence Changes in the Mocho-Choshuenco Volcano (Southern Chile) Derived From 35 Years of Landsat Satellite Images

Author:

Chávez Roberto O.,Briceño Verónica F.,Lastra José A.,Harris-Pascal Daniel,Estay Sergio A.

Abstract

Mountain regions have experienced above-average warming in the 20th century and this trend is likely to continue. These accelerated temperature changes in alpine areas are causing reduced snowfall and changes in the timing of snowfall and melt. Snow is a critical component of alpine areas - it drives hibernation of animals, determines the length of the growing season for plants and the soil microbial composition. Thus, changes in snow patterns in mountain areas can have serious ecological consequences. Here we use 35 years of Landsat satellite images to study snow changes in the Mocho-Choshuenco Volcano in the Southern Andes of Chile. Landsat images have 30 m pixel resolution and a revisit period of 16 days. We calculated the total snow area in cloud-free Landsat scenes and the snow frequency per pixel, here called “snow persistence” for different periods and seasons. Permanent snow cover in summer was stable over a period of 30 years and decreased below 20 km2 from 2014 onward at middle elevations (1,530–2,000 m a.s.l.). This is confirmed by negative changes in snow persistence detected at the pixel level, concentrated in this altitudinal belt in summer and also in autumn. In winter and spring, negative changes in snow persistence are concentrated at lower elevations (1,200–1,530 m a.s.l.). Considering the snow persistence of the 1984–1990 period as a reference, the last period (2015–2019) is experiencing a −5.75 km2 reduction of permanent snow area (snow persistence > 95%) in summer, −8.75 km2 in autumn, −42.40 km2 in winter, and −18.23 km2 in spring. While permanent snow at the high elevational belt (>2,000 m a.s.l.) has not changed through the years, snow that used to be permanent in the middle elevational belt has become seasonal. In this study, we use a probabilistic snow persistence approach for identifying areas of snow reduction and potential changes in alpine vegetation. This approach permits a more efficient use of remote sensing data, increasing by three times the amount of usable scenes by including images with spatial gaps. Furthermore, we explore some ecological questions regarding alpine ecosystems that this method may help address in a global warming scenario.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3