Snow Persistence and Snow Line Elevation Trends in a Snowmelt-Driven Basin in the Central Andes and Their Correlations with Hydroclimatic Variables

Author:

Aranda Felipe1ORCID,Medina Diego1,Castro Lina1ORCID,Ossandón Álvaro1ORCID,Ovalle Ramón1,Flores Raúl P.1ORCID,Bolaño-Ortiz Tomás R.2ORCID

Affiliation:

1. Departamento de Obras Civiles, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile

2. Department of Agricultural Science, School of Natural Resources Engineering, Universidad Católica del Maule, Curicó 3466706, Chile

Abstract

The mountain cryosphere is crucial for socio-economic processes, especially during the dry seasons. However, anthropogenic climate change has had a detrimental impact on the cryosphere due to its sensitivity. Over the past two decades, there has been a decline in precipitation and a temperature rise, leading to a substantial reduction in the timing and extent of snow cover. This increase in temperature also elevates the snow line elevation (SLE), further diminishing the volume of available freshwater in the snow-driven basins of the Andes. In this study, we use 22 years (2000–2021) of 8-day snow product (MOD10A2) from the Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the annual and seasonal variability of snow cover area, SLE, and snow persistence (SP, an indicator of the duration of snow) in the Yeso River basin in Central Chile and the correlation of SP and SLE with hydrometeorological variables and climatic indices. We introduce a new approach called the Maximum Dissimilarity Method to obtain the SLE even on cloudy days. The results are as follows: (1) Snow cover area reductions of 34.0 km2 at low elevations in spring and 86.5 km2 at mid elevations in summer were found when comparing the period 2016–2021 to 2000–2004; (2) SP trends at the annual scale revealed a significant decrease in 89% of its area and an average of 3.6 fewer days of snow cover per year; (3) an upward and significant trend of 21 m‧year−1 in the annual SLE was found; and (4) annual SP and SLE were highly correlated with annual hydrometeorological variables, and spring and summer snow variables were significantly correlated with dry streamflow. This methodology can potentially serve as a valuable tool for detecting trends in snow-covered surfaces, and thereby associate these changes with climate change or other anthropogenic effects in future research.

Funder

ANID-FONDECYT

ANID FONDECYT Iniciación

ANID Scholarship Program/MAGISTER NACIONAL

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3