Role of Impoundments Created by Low-Head Dams in Affecting Fish Assemblages in Subtropical Headwater Streams in China

Author:

Li Qiang,Li Xiang,Fu Haixia,Tan Kai,Ge Yihao,Chu Ling,Zhang Chen,Yan Yunzhi

Abstract

Low-head dams are ubiquitous human disturbances that degrade aquatic ecosystem function worldwide. The localized effects of low-head dams have been relatively well documented; however, most previous studies have ignored the concealed process caused by native-invasive species. Based on fish assemblage data from the first-order streams of four basins in the Wannan Mountains, we used a quantitative approach to assess the effects of low-head dams on fish assemblages by distinguishing between native and native-invasive species using occurrence- and abundance-based data, respectively. Low-head dams significantly decreased native fish alpha diversity while favoring native-invasive fish. The opposite pattern between the two fish types partly masked changes in the whole fish assemblage. Meanwhile, the establishment of widespread native-invasive species and the loss of native species driven by low-head dams influenced the interaction network structure. The degree to which local fish assemblages were altered by low-head dams, i.e., beta diversity (β-diversity) was significantly higher for abundance-based approaches than for occurrence-based ones, suggesting that the latter underestimated the effects of low-head dams. Furthermore, the species contribution to β-diversity of native species was significantly higher than that of native-invasive species in both impoundments and free-flowing segments for abundance-based data. In communities or regions where native fish species are predominant, our results suggest that understanding which species contribute to β-diversity will offer new insights into the development of effective conservation strategies by taking the identities of native and native-invasive species into account.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3