Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide

Author:

Barbarossa ValerioORCID,Schmitt Rafael J. P.ORCID,Huijbregts Mark A. J.ORCID,Zarfl Christiane,King Henry,Schipper Aafke M.ORCID

Abstract

Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.

Funder

EC | Horizon 2020

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference58 articles.

1. J. S. Nelson , Fishes of the World (John Wiley & Sons, ed. 4, 2006).

2. WWF , “Living Planet Report 2018: Aiming higher”, M. Grooten , R. E. A. Almond , Eds. (WWF, Gland, Switzerland, 2018).

3. Global threats to human water security and river biodiversity

4. Emerging threats and persistent conservation challenges for freshwater biodiversity;Reid;Biol. Rev. Camb. Philos. Soc.,2019

5. Mapping the world’s free-flowing rivers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3