Atmospheric drivers affect crop yields in Mozambique

Author:

Takele Robel,Buizza Roberto,Dell'Acqua Matteo

Abstract

Climate change has been inducing variations in the statistics of both the large-scale weather patterns and the local weather in many regions of the world, and these variations have been affecting several human activities, including agriculture. In this study, we look at the links between large-scale weather patterns and local weather as well as agriculture, with a specific regional focus on Mozambique between 1981 and 2019. First, we investigated linear trends and links between large-scale weather patterns and local weather in the region using the ERA5 dataset. We used the same data to investigate how climate change has been affecting the statistics of large-scale weather patterns. Then, we derived Mozambique country-level cereal yield data from FAO and linked it up with climate and weather data to assess what is the relationship between large-scale patterns and local agronomic outputs using a multiple linear regression (MLR) model with crop yield as the response variable and climate drivers as predictors. The results indicate that in Mozambique, the crop season warmed substantially and consistently with climate change-induced global warming, and the rainy season had become drier and shorter, with precipitation concentrated in fewer, more intense events. These changes in the local weather have been linked to variations in the statistics of large-scale weather patterns that characterize the (large-scale) atmospheric flow over the region. Our results indicate a negative impact on yield associated with climate change, with average yield losses of 20% for rice and 8% for maize over the analyzed period (1981–2019). This negative impact suggests that, at the country scale, further future warming during the growing season may offset some of the cereal yield gains from technological advances.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Reference38 articles.

1. “Copernicus Climate Change Service (C3S), Fifth generation of ECMWF atmospheric reanalysis of the global climate for agriculture and ago-ecological studies,”;Copernicus Climate Change Service Climate Data Store (CDS), July-2021,2021

2. “Framing and Context,”;Allen;Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018

3. Variability in the mozambique channel trough and impacts on Southeast African rainfall;Barimalala;J. Clim.,2020

4. Historical warnings of future food insecurity with unprecedented seasonal heat;Battisti;Science,2009

5. “Chapter 4 - Predictability,”;Buizza;Uncertainties in Numerical Weather Prediction,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3