Indian Ocean mixed layer depth changes under global warming

Author:

Gao Zhen,Long Shang-Min,Shi Jia-Rui,Cheng Lijing,Li Gen,Ying Jun

Abstract

The surface ocean mixed layer (OML) is critical for climate and biological systems. Changes in ocean mixed layer depth (MLD) of the Indian Ocean under global warming are examined utilizing outputs from 24 climate models in the Coupled Model Intercomparison Project phase 6 (CMIP6) models and the Community Earth System Model 1.0 with Community Atmosphere Model version 5 (CESM1–CAM5). The results show that the MLD generally decreases in low- and high-emissions Shared Socioeconomic Pathway (SSP) scenarios (ssp126 and ssp585). In ssp126 and ssp585, the multi-model ensemble-mean OML, respectively shoals about 5 and 10% over both the northern tropics and southern subtropics, with high model consistency. This robust OML shoaling appears in the 1980s and is closely associated with increased surface buoyancy forcing and weakened winds. In contrast, the OML in the south equatorial Indian Ocean slightly deepens and displays large intermodel differences in the sign and magnitude of the changes. The effects of direct CO2 increase and wind changes on OML changes are further quantified by CESM1–CAM5 partially coupled experiments. The results show that the increased surface net heat flux from direct CO2 increase dominates OML shoaling in the northern tropics. In the southern subtropics, the increased surface heat flux, reduced wind speed, and wind-driven divergence all facilitate the OML shoaling. In the south equatorial Indian Ocean, wind changes generally deepen the OML, consistent with the CMIP6 results. Moreover, the OML shoaling-related upper ocean stratification changes are contributed by both temperature and salinity changes in the northern tropics but dominated by temperature changes south of 10°S. These results highlight the regional differences in MLD changes and their forcing, which is important for understanding regional climate changes and corresponding changes in extreme events and biological systems under global warming.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3