Recent Decline in Antarctic Sea Ice Cover From 2016 to 2022: Insights From Satellite Observations, Argo Floats, and Model Reanalysis

Author:

Suryawanshi KshitijaORCID,Jena B.ORCID,Bajish C. C.ORCID,Anilkumar N.

Abstract

Ever since the abrupt drop in Antarctic sea ice extent (SIE) began in spring of 2016, as opposed to its consistent growth (1.95% decade–1 from 1979 to 2015), the SIE in the satellite era has reached record lows in 2017 and 2022. From spring 2016, the satellite-based SIE remained consistently lower than the long-term mean, with the trend dropping to 0.11% decade–1 from 1979 to 2022. The top record lowest SIE years were observed from 2016 to 2022, corresponding to the warmest years dating back to 1979. With this background, the rare features of Antarctic polynyas reoccurred frequently and the west Antarctic Peninsula remained ice-free throughout 2022. Recently, the SIE dropped to a record low in June 2022, July 2022, August 2022, January 2023, and February 2023, which were 13.67%, 9.91%, 6.79%, 39.29%, 39.56% below the long-term mean value, respectively for months described above. We find that the observed decline in SIE during 2016–2022 occurred due to the combined influences from the intensification of atmospheric zonal waves with enhanced poleward transport of warm-moist air and anomalous warming in the Southern Ocean mixed layer (>1°C). Although the sudden sea ice decline in spring of 2016 occurred corresponding to the transitional climate shift from IPO– (Interdecadal Pacific Oscillation, 2000–2014) to IPO+ (2014–2016), the recent decline after 2016 occurred in a dominant IPO– and Southern Annular Mode (SAM+). CMIP6 models showed a consistent decrease in ensemble-mean SIE from 1979 to 2022. The model trend exhibits similarities to the recent declining trend in SIE from satellite observations since 2016, suggesting a possible shift towards a warmer climatic regime.

Publisher

Stockholm University Press

Subject

Atmospheric Science,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3