Solar Geoengineering Modeling and Applications for Mitigating Global Warming: Assessing Key Parameters and the Urban Heat Island Influence

Author:

Feinberg Alec

Abstract

In this paper, solar geoengineering modeling is presented with a goal to simplify reverse forcing assessments and the capability to apply it to a wide variety of applications. Results find improvements on sun-shade space mirror and desert surface treatment estimates, stratosphere sun-dimming methods, and the Urban Heat Islands (UHIs) influence. A heat amplification parameter is added to the model allowing it to be applied to UHI estimates. UHI amplification effects are due to the large solar area of buildings, reduction of wind cooling, solar canyons, and so forth. The UHI reverse forcing requirements are assessed with amplification estimates of 3.1 and 5.2, yielding 7.6% to 12.7% of gross global warming could be due to the urbanization effect, respectively. The gross warming 7.6% estimate, accurately compares to the author's prior study, and the 12.7% represents very recent results by other authors from new measurement methods. Key issues are pointed out that without including a heat amplification estimate and other modeling parameters, the UHI intensity, that likely dominates the urbanization warming effect could be severely underestimated, yielding urbanization estimates possibly as low as 2.4%. It is important to identify possible reasons where underestimates may occur from a modeling perspective to help understand controversies that may be occurring. The new model helps to clarify such parameters, allows for a significant reduction in complexity and calibration, and is shown to be helpful for numerous solar geoengineering applications including the serious need to reduce the UHI effect worldwide. Solar geoengineering solutions will require a lot of creativity, in addition to modeling, suggestions are provided for drought relief ideas and Paris Accord goals required for any successful urban solar geoengineering coordinated effort.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Reference104 articles.

1. The long-term effect of increasing the albedo of urban areas;Akbari;Environ. Res. Lett.,2012

2. Overview of challenges and achievements in the climate adaptation of cities and in the climate proof cities program;Albers;Build. Environ,2015

3. ArthurD. Lake Shasta Loses Hundreds of Millions of Gallons Daily Through Evaporation2017

4. AzariJafariH. KirchainR. GregoryJ. Mitigating Climate Change with Reflective Pavements, CSHub Topic Summary2020

5. Albedo enhancement over land to counteract global warming: impacts on hydrological cycle;Bala;Clim. Dyn.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3