Urbanization Heat Flux Modeling Confirms It Is a Likely Cause of Significant Global Warming: Urbanization Mitigation Requirements

Author:

Feinberg Alec1ORCID

Affiliation:

1. DfRSoft Research, Physics Department, Northeastern University, Boston, MA 02115, USA

Abstract

Recent ground-based measurements find the magnitude of the urbanization effect on the global average annual mean surface air temperature corresponds to an urbanization contribution of 12.7%. It is important to provide modeling to help understand these results as there are conflicting concerns. This study models the global warming contribution that urbanization heat fluxes (UHF) can make due to anthropogenic heat release (AHR), and solar heating of impermeable surface areas (ISAs), with additional secondary effects. Results help explain and support ground-based observations. Climate models typically omit anthropogenic heat release (AHR) as warming estimates are below 1%. In agreement, the baseline assessment in this paper has similar findings. However, in this study, the methods of climate amplification estimates (MCAE) with data-aided physics-based amplification models are used. When the MCAE are applied at the global and microclimate levels that consider greenhouse gases (GHGs), feedback, and other secondary effects; the results show that AHR fluxes can amplify, increasing to have an estimated global warming (GW) influence of 6.5% from 1950 to 2022 yielding a 0.9% decade−1 increase. This increasing rate due to energy consumption is found as anticipated to be reasonably correlated to the increasing population growth rate over this time. Furthermore, using the MCAEs, this paper studies heat fluxes assessment due to solar heating of unshaded impermeable surfaces including likely secondary amplification effects. Impermeable surface areas (ISAs) such as asphalt roads, roofs, and building sides have been reported with high land surface contact temperatures (LSCTs) relative to non-ISAs and significantly found to contribute to urbanization warming. Results indicate that high-temperature unshaded impermeable surfaces (including building sides) are estimated to average around 10–11 °C above the earth’s ambient temperature of 14.5 °C (showing albedo ISA estimates between 0.133 and 0.115 respectively); the ISA heat fluxes with secondary effects are estimated to have about a GW influence of 6.5%. This is broken down with average contributions of 4.0% from urban ISAs and 2.5% from rural ISA heat fluxes. Asphalt road ISA heat fluxes are estimated to have about a 1.1% global warming influence. Then the total UHF effect from ISAs and AHR with secondary effects is assessed in modeling to yield a combined average GW influence of 13% helping to confirm ground-based measurement results. Several key adjustment values were used for shading, cloud coverage, and rural-to-urban ISA ratios. Microclimate GHGs and related water vapor feedback (WVF) were assessed to increase urban warming by about 50%. As well an assessment of water vapor and radiation increases from UHF is provided. This study also shows the need to incorporate urbanization heat fluxes with secondary effects into climate models and indicates the necessity for Paris Agreement urban heat flux mitigation goals. Results also found that given average climate conditions, it is possible to mitigate much of the UHI effect with an albedo increase of 0.1 that is anticipated to lower the average impermeable surface temperatures by about 9 °C. Studies show this can be accomplished with cost-effective cool roads and roofs. Although roads are only estimated to occupy 14% of ISAs, changing roads from asphalt to concrete-type surfaces would improve reflectivity by about a factor of 5 and is estimated to mitigate about 5.5% of global warming. Unfortunately, the current overuse of black asphalt on pavements and roofs is highly dangerous to our environment causing UHI increases in heatwaves, excessive temperatures, and global warming issues and should be banned. Asphalt usage also reduces opportunities for solar geoengineering of urbanization.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference84 articles.

1. Urbanization effects on estimates of global trends in mean and extreme air temperature;Zhang;J. Clim.,2021

2. IPCC AR6 (2023, January 11). Regional Fact Sheet—Urban Areas. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Urban_areas.pdf.

3. Feinberg, A. (2023). Climate change trends due to population growth: Feedback and CO2 doubling temperature opposing rates. Preprint, submitted.

4. Worldbank (2021, December 04). Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview#1.

5. IEA (International Energy Agency) (2022, December 23). World Energy Outlook. Available online: https://iea.blob.core.windows.net/assets/77ecf96c-5f4b-4d0d-9d93-d81b938217cb/World_Energy_Outlook_2018.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3