Author:
Shi Tao,Yang Yuanjian,Sun Dabing,Huang Yong,Shi Chune
Abstract
It is important to quantify changes in the local meteorological observational environment (MOE) around weather stations if we are to obtain accurate assessments of the regional warming of the surface air temperature (SAT) in relation to urbanization bias. Current studies often use two-dimensional parameters (e.g., the land surface temperature, land use/land cover and the normalized difference vegetation index) to characterize the local MOE. Most of the existing models of the relationship between urbanization bias in SAT series and MOE parameters are linear regression models, which ignore the non-linear driving effect of MOE changes on SAT series. By contrast, there is a lack of three-dimensional parameters in the characterization of the morphological features of the MOE. Changes in the MOE related to urbanization lead to uncertainties in the contribution of SAT series on different scales and we need to introduce vertical structure indexes to enrich the three-dimensional spatial morphology of MOE parameters. The non-linear response of urbanization bias in SAT series to three-dimensional changes in the MOE and its scale dependence should be explored by coupling computational fluid dynamics model simulations with machine learning.
Funder
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献