Urbanization Effects in Estimating Surface Air Temperature Trends in the Contiguous United States

Author:

Huang Siqi123,Ren Guoyu23ORCID,Zhang Panfeng24ORCID

Affiliation:

1. Chinese Academy of Meteorological Sciences, Beijing 100081, China

2. Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

3. National Climate Center, China Meteorological Administration, Beijing 100081, China

4. School of Tourism and Geographical Sciences, Jilin Normal University, Siping 136000, China

Abstract

In the past century, local-scale warming caused by a strengthening urban heat island effect has brought inevitable systematic bias to observational data from surface weather stations located in or near urban areas. In this study, the land use situation around U.S. Climate Reference Network (USCRN) stations was used as a reference for rural station selection; stations with similar environmental conditions in the U.S. Historical Climatology Network (USHCN) were selected as reference stations using a machine learning method, and then the maximum surface air temperature (Tmax) series, minimum surface air temperature (Tmin) series and mean surface air temperature (Tmean) series of rural stations during 1921–2020 were compared with those for all nearby stations (including both rural and urban stations) to evaluate urbanization effects in the USHCN observation data series of the contiguous United States, which can be regarded as urbanization bias contained in the latest homogenized USHCN observation data. The results showed that the urbanization effect on the Tmean trend of USHCN stations is 0.002 °C dec−1, and the urbanization contribution is 35%, indicating that urbanization around USHCN stations has led to at least one-third of the overall warming recorded at USHCN stations over the last one hundred years. The urbanization effects on Tmax and Tmin trends of USHCN stations are −0.015 °C dec−1 and 0.013 °C dec−1, respectively, and the urbanization contribution for Tmin is 34%. These results have significance for understanding the systematic bias in USHCN temperature data, and they provide a reference for subsequent studies on data correction and climate change monitoring.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Reference52 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis, Cambridge University Press. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

2. Urbanization: Its detection and effect in the United States climate record;Karl;J. Clim.,1988

3. Detection of urban warming in recent temperature trends in Japan;Fujibe;Int. J. Climatol.,2009

4. Quantifying the impact of urbanization on U.S. Historical Climatology Network temperature records;Hausfather;J. Geophys. Res. Atmos.,2013

5. Evidence for a significant urbanization effect on climate in China;Zhou;Proc. Natl. Acad. Sci. USA,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3